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A cognitive architecture is a general proposal about the representations and 

processes that produce intelligent thought.   Cognitive architectures have primarily been 

used to explain important aspects of human thinking such as problem solving, memory, 

and learning.  But they can also be used as blueprints for designing computers and robots 

that possess some of the cognitive abilities of humans.    The most influential cognitive 

architectures that have been developed are either rule-based, using if-then rules and 

procedures that operate on them to explain thinking, or connectionist, using artificial 

neural networks.    This chapter will describe the central structures and processes of these 

two kind of architectures, and review how well they succeed as general theories of mental 

processing.     I argue that advances in neuroscience hold the promise for producing a 

general cognitive theory that encompasses the advantages of both rule-based and 

connectionist architectures.    

What is an explanation in cognitive science?    In keeping with much recent 

philosophical research on explanation, I maintain that scientific explanations are typically 

descriptions of mechanisms that produce the phenomena to be explained (Bechtel and 

Abrahamsen, 2005;  Machamer, Darden and Craver, 2000).  A mechanism is a system of 

related parts whose interactions produce regular changes.  For example, to explain how a 

bicycle works, we describe how its parts such as the pedals, chain, and wheels are 

connected to each other and how they interact to produce the movement of the bike.   
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Similarly, explanation in physics, chemistry, and biology identifies relevant parts such as 

atoms, molecules, and cells and describes how they interact to produce observed changes 

in things and organisms.   Explanations in cognitive science are typically mechanistic in 

that they describe how different kinds of thinking occur  as the result of mental 

representations (parts) operated on by computational procedures (interactions) that 

change mental states.    

A cognitive architecture is a proposal about the kinds of mental representation and 

computational procedure that constitute a mechanism for explaining a broad range of 

kinds of thinking.    A complete unified general theory of cognition would provide 

mechanisms for explaining the workings of perception, attention, memory, problem 

solving, reasoning, learning, decision making, motor control, language, emotion, and 

consciousness.   Let us now review the history of cognitive architectures.    

Brief History of Cognitive Architectures 

The term “cognitive architecture”  developed from the idea of a computer 

architecture, which originated with a description of the first widely used computer, the 

IBM 360 (Amdahl, Blaaw, and Brooks, 1964).  A computer architecture is the conceptual 

structure and functional behavior of a system as seen by a programmer, not the 

computer’s physical implementation.    John Anderson’s 1983 book, The Architecture of 

Cognition was the main text that introduced the term “cognitive architecture”, defined (p. 

ix) as a “the basic principles of operations of a cognitive system”.  That book describes 

the ACT architecture, which is a synthesis of Anderson’s earlier ideas about propositional 

memory with previous ideas about rule-based processing.  The idea of a cognitive 

architecture was already implicit in the rule-based information processing theories of 
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Newell and Simon (1972).  Allan Newell further popularized the idea in his 1990 book, 

Unified Theories of Cognition, which described his work with John Laird and Paul 

Rosenbloom on a particular rule-based architecture, SOAR (Rosenbloom, Laird, and 

Newell, 1993).    Rule-based systems were originally used by Newell and Simon to 

explain problem solving, but later work has applied them to account for a much broader 

range of psychological phenomena, including memory and learning.  The rule-based 

approach continues to thrive in ongoing research by proponents of ACT, SOAR, and 

related cognitive architectures; for more references, see the discussion below of 

psychological applications of rule-based systems.      

Rule-based systems are not the only way to think  about cognition.   In the 1970s, 

researchers  such as Minsky (1975) and Schank and Abelson (1977) proposed a different 

way of understanding cognition as involving the matching of current situations against 

concept-like structures variously called frames, schemas, scripts, and prototypes.  On this 

view,  the fundamental kind of mental representation is a schema that specifies what 

holds for a typical situation, thing, or process.  Proponents of schemas have used them to 

explain such phenomena as perception, memory, and explanation.   For example, you 

understand what happens when you go out to eat by applying your restaurant schema, 

which specifies the typical characteristics of restaurants.   However, schema-based 

systems have not survived as general  theories of cognition, although they have been 

included in hybrid systems that use both rules and schemas such as PI, which models 

aspects of scientific reasoning such as discovery and explanation (Thagard, 1988).      

Another supplement to the rule-based approach involves analogical reasoning, in 

which problems are solved not by the application of general rules but by the matching of 
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a stored mental representation of a previous case against a description of the problem to 

be solved.  For example, you might understand a new restaurant by comparing it to a 

highly similar restaurant that you have previously experienced, rather than by using a 

general schema or rule.  Although analogical reasoning has been much discussed  in 

psychology (Holyoak and Thagard, 1995), and in artificial intelligence under the term 

“case-based” reasoning (Kolodner, 1993), it is implausible to base a whole cognitive 

architecture on just schema-based or case-based reasoning. 

The major  alternative to rule-based cognitive architectures emerged in the 1980s.   

Neural network models of thinking had been around since the 1950s, but they only began 

to have a major impact on theorizing about the mind with the development of the PDP 

(parallel distributed processing) approach (Rumelhart and McClelland, 1986).   This 

approach is also called connectionism, because it views  knowledge as being encoded, not 

in rules, but via the connections between simple neuron-like processors.   More details 

will be provided below about how such processors work and how connectionist 

architectures differ from rule-based architectures.    Connectionism has been applied to a 

broad range of psychological phenomena ranging from concept learning to high-level 

reasoning.  Like rule-based cognitive architectures, connectionist ones are a thriving 

intellectual industry, as seen for example in the applications to categorization and 

language found in Rogers and McClelland (2004) and Smolensky and LeGendre (2006).    

We can conduct a more systematic comparison of rule-based and connectionist 

approaches to explaining cognition by reviewing what they say about representations and 

procedures.    

Representations 
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Since its origins in the mid-1950s, cognitive science has employed a fundamental 

hypothesis, that thinking is produced by computational procedures operating on mental 

representations.   However, there has been much controversy about what kind of 

representations and what kind of procedures  are best suited to explain the many varieties 

of human thinking.    I will not attempt to review all the different versions of rule-based 

and connectionist architectures that have been proposed.  Instead, I will provide an 

introduction to the representations and procedures used by rule-based and connectionist 

systems by showing how they can deal with a familiar area of human thinking:  

personality and human relations. 

In thinking about all the people you know, you employ a familiar set of concepts, 

describing them as kind or cruel, intelligent or dumb, considerate or self-centered, polite 

or crude, outgoing or antisocial, confident or fearful, adventurous or cautious, 

conscientious or irresponsible, agreeable or difficult, and so on.   Rule-based  and 

connectionist approaches offer very different pictures of the nature of these concepts.  

From a rule-based perspective, your knowledge about other people consists of a set of 

rules, that can be stated as if-then structures.     For example, here are some rules that 

might capture part  of your knowledge about kindness, letting P stand for any person.   

If P is kind, then P helps other people. 

If P is kind, then P cares about other people. 

If P is kind, then P is not cruel. 

If P cares about other people and helps other people, then P is kind.  

If P has the goal of being kind, then P should think about the feelings of others.   

If P is cruel, then avoid P.   
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As an exercise you should try to write down rules for a few other social concepts such as 

outgoing and polite.  Unless you find it terribly difficult to construct such rules, you 

should find it plausible that the representations in your mind of social concepts consist of 

rules.   

Connectionist cognitive architectures propose a very different kind of mental 

representation.    As a first approximation, we can think of a concept as a node in a 

network that is roughly analogous to networks of neurons in the brain.    Figure 1 shows a 

very simple network that has a few nodes for the concepts kind, cruel,  and mean.   But 

these concepts are not related by if-then rules that employ word-like symbols, but instead 

by simple connections that  can be either positive or negative, just as neurons in the brain 

are connected by synapses that enable one neuron to either excite or inhibit another.   The 

network in figure 1 uses a kind of representation called localist, which means that each 

concept is represented by a single neuron-like node.    

kind

cruel

helps

cares

mean
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Figure 1.   Localist network showing some of the connections between 

social concepts.    The solid lines indicate excitatory links and the dotted 

lines indicate inhibitory links.   Links in this network are symmetric, that 

is, they run in both directions.   

Much more radically, connectionism can represent concepts by distributed  

representations that use many nodes for each concept.   Figure 2 shows a typical three-

layer network that consists of an input layer of simple features and an output layer of 

concepts, with an intervening layer called hidden because it is  neither input nor output.   

As in the localist network in figure 1,   the nodes are connected by links that are positive 

or negative depending on how the network is trained.  Whereas  if-then rules and localist 

connections are typically specified in advance, connections in a distributed representation 

are usually learned by experience.   I will say more about how such networks are trained 

in the section below about procedures.   The key point to note now is that a concept such 

as cruel  is not the single node in the output layer, nor any simple rule connecting the 

input and output layers.  Rather, it is a whole pattern of connections involving the input, 

output, and hidden layers; the nodes in the hidden layer do not need to acquire any 

specific interpretation.   Neural networks in the brain are much more complicated than 

the simple three-layer network in figure 2, but they share the property that representation 

of concepts is distributed across many neurons.    
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Figure 2.   Distributed representation of social concepts.   The links are 

not symmetric, but feed activation forward from left to right.   Weights on 

the links are learned by training.    

  To summarize, social and other concepts in a rule-based cognitive architecture 

primarily consist of sets of if-then rules, but in a connectionist architecture concepts are 

patterns of connections between nodes in a network, including hidden nodes that by 

themselves do not have any specific interpretation.    Rather, they serve by virtue of their 

links to input and output layers to furnish a statistical connection between inputs and 

outputs that is often hard to characterize in words and is rarely replaceable by general if-
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then rules.  To appreciate fully the difference between rule-based and connectionist 

representations, it is crucial to notice  how they support different kinds  of procedures  for 

reasoning, problem solving, and learning.   

Rule-based Procedures 

Just as you cannot make a cake without doing things to the ingredients, you 

cannot think without mental procedures that operate on your representations.    For rule-

based systems, the simplest  kind of procedure is the obvious one where you match the IF 

part against something you know and then fill in the THEN part.   For example, you 

might make the following inference: 

If P cares about other people and helps other people, then P is kind. 

Sandra cares about other people and helps other people. 

Therefore, Sandra is kind.  

In a computational model of a rule-based system, this sort of inference is made by having 

a list of facts of current interest, such as that Sandra cares about other people, in addition 

to a large set of rules that encapsulate information about social concepts.     Here is the 

main forward procedure performed by a cognitive architecture based on rules: 

1.   Match what is currently known (the facts) against a database of rules. 

2.   If the facts match the IF parts of a rule, then infer the THEN part. 

3.    Repeat. 

The repetition is crucial, because a rule-based system usually needs to make a whole 

series  of inferences to come to an interesting conclusion.   For example, having inferred 

that Sandra is kind, we could then use the rule  if P is kind then P is not cruel to infer that 
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Sandra is not cruel.   Thus if-then rules can be chained together to produce complex 

inferences. 

Often it is useful to chain rules backwards instead of forward in order to answer 

questions or solve problems.   Suppose, for example, your aim is to answer the question 

whether  Sandra is cruel and you want to find rules that  can answer it.   You can then 

work backwards using the following procedure: 

1.  Match want you want to know (the goals) against a database of rules. 

2.  If the goal matches the THEN part of a rule, then add the IF part to the set of goals. 

3.   Repeat. 

This procedure may enable you to chain backward from the goals you want to accomplish 

to find aspects of the current situation that would identify the information you need to 

then chain forward to provide an answer to your question or a solution to your goal.   For 

example, generating the goal to determine if Sandra is cruel may lead you to retrieve 

rules such as If P insults people then P is cruel that can then spur you to ask whether 

Sandra insults people.      

Thus a rule-based system accomplishes reasoning and problem solving by 

forward or backward chaining using a sequence of rules.   To make such reasoning 

psychologically effective, other procedures are needed for retrieving rules from memory, 

resolving conflicts between competing rules, and learning new rules.  First, consider 

retrieval from memory.  My description of the procedures for forward and backward 

chaining assumed that there is an accessible list of relevant rules, but an educated adult 

has accumulated  many thousands of rules constituting the thousands of concepts that 

have been acquired.  (It has been estimated that the typical vocabulary of an adult  is 
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more than 100,000 words, so there must be least this many concepts and rules.)    It 

would be too slow and awkward to match thousands of rules one by one against the rule-

based system’s list of known facts or goals to be solved.    Hence there needs to be a 

procedure to ensure that the matching is only done against a set of rules somehow 

selected to be potentially relevant.    Anderson’s (1983) ACT architecture uses spreading 

activation among the constituents of rules, facts, and goals as a way to select from 

memory a set of rules that appear relevant for matching.    For example, if the concepts 

cruel and insult  are associated in your memory because of your previous experiences, 

then activating one of them can lead to the activation of the other, making available a 

new set of relevant rules.      

Second, additional procedures are needed to determine what rules to apply in 

cases where they provide conflicting answers.    Suppose you want to determine whether 

Solomon is outgoing, and you have the following rules in your memory base: 

If P likes to go to parties, then P is outgoing. 

If P likes to read a lot of books, then P is not outgoing. 

If you know that Solomon likes to go to parties and to read lots of books, your rules 

suggest that you should infer that Solomon is both outgoing and not outgoing.     To 

resolve this conflict, which is even more acute when the THEN part of the rules  suggests 

incompatible actions such as both talking to someone and walking away, there needs to 

be a procedure to select which rules apply best to the problem situation.    Procedures that 

have been used in various cognitive architectures include using rules that are most 

specific to the current situation and using rules that have been highly successful in past 

problem solving episodes.    
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The third sort of procedure that is important for rule-based cognitive architectures 

involves learning new rules and new strategies for solving problems more effectively.    

How did you acquire rules like If P is kind, then P helps homeless people?  This rule is 

not  part of the central meaning of the concept kind, so it is unlikely that you were simply 

told it as part of learning what kindness is.   Instead, you may have learned it from 

experience, seeing a collection of examples of people who are both kind and help 

homeless people, producing a new rule by generalization.    Another way of acquiring a 

rule is by stringing together other rules you already have, perhaps reasoning as follows: 

If P is kind, then P cares about people. 

If P cares about people, then P helps homeless people. 

So:  If P is kind, then P helps homeless people. 

Here a new rule is acquired by combining two or more other rules.    In sum,  rule-based 

architecture can have various procedures for learning new rules, including being given 

the rule, generalizing from experience, and compiling new rules from previous rules.   

Thus rule-based systems can employ many powerful procedures for problem 

solving and learning:  forward and backward chaining, retrieval by spreading activation, 

conflict resolution, and generation of new rules.    

Connectionist Procedures 

Connectionist cognitive architectures have very different methods for reasoning 

and learning.    In rule-based systems, problem solving consists primarily of using rules 

to search a space of possible actions.    In contrast, the connectionist perspective 

conceives of problem solving  as parallel constraint satisfaction.   Suppose your problem 

is to categorize someone as either kind or cruel, perhaps as part of a hiring decision.   



 13 

Instead of using rule-based reasoning, you might apply the kind of network shown in 

figure 1.   The excitatory links in the network represent positive constraints, factors that 

tend to go together, such as being kind and helping others.   The inhibitory links represent 

negative constraints, factors that tend not to go together, such as being kind and being 

cruel.     The inference problem here is to figure out the  best way to satisfy the most 

constraints, which is done in parallel by spreading activation through the network.   

Activation is a property of each node in the network, roughly analogous to the firing rate 

of a neuron (how many times it fires per second compared to how fast it could fire).    

Activation of a node represents the acceptability of the representation to which the node 

corresponds.     Just as the brain operates by parallel activity of multiple neurons, 

constraint satisfaction in a neural network should be a parallel process that takes into 

account all relevant constraints simultaneously.  

Here is an outline of the procedure used to solve a constraint satisfaction problem 

in connectionist fashion: 

1.  Express the problem as a set of nodes connected by excitatory and inhibitory links. 

2.  Establish the givens of the problem as inputs to some of the nodes. 

3.   Spread activation among the nodes based on their excitatory and inhibitory inputs, 

until the network settles, i. e. all nodes have reached stable activation. 

4.   Read off the networks solution to the problem as represented by the nodes that have 

highest activation. 

For example, the network shown in figure 1, with inputs from the evidence that a person 

helps others and cares about them, will settle with the node for kind having high 

activation and the node for cruel having low activation.    The next section  lists many 
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other kinds of problems that can be solved by parallel constraint satisfaction, from 

decision making to vision to language comprehension.   

In the connectionist procedure I just sketched for solving parallel constraint 

satisfaction problems,  the links between the nodes are given, but how might they be 

learned?   Moreover,  how do the nodes in networks with distributed representations like 

those in figure 2 acquire meaning?      The most common connectionist procedure used to 

learn weights is called backpropagation, because it propagates errors back from output 

nodes to adjust all the weights in the network.   Here is a simple description of  how 

backpropagation works: 

 1.  Assign weights randomly to all the connections in the network. 

2.  Provide inputs to the input units, feed activation forward through the network, and see 

whether the outputs produced are correct. 

3.   If the outputs are wrong, then change the weights that produced them, including 

weights between the input and hidden layer and between the hidden and output layer.   

4,   Repeat with many input examples until the network has acquired the desired 

behavior. 

This procedure is a kind of supervised learning, in that it requires telling the network 

whether it is getting the right answer.    There are also learning procedures for artificial 

neural networks that do not require a supervisor.   The simplest is one proposed by  Hebb 

(1949) that has been found to operate in real neural networks:  if two neurons are 

connected and they fire at the same time, then increase the strength of the connection 

between them; whatever fires together, wires together.  More complicated procedures for 



 15 

unsupervised learning using an internal model of the task to be completed have also been 

developed.  

To sum up, connectionist networks make inferences and solve problems by 

parallel constraint satisfaction, and they learn to improve their performance by 

procedures that adjust the weights on the links between nodes.   I will now review some 

of the many psychological applications that have been found for rule-based and 

connectionist cognitive architectures.   

Psychological Applications 

Both rule-based and connectionist architectures embody powerful theories about 

the representations and procedures that explain human thinking.    Which cognitive 

architecture, which theory of thinking, is the best?    There have been many great battles 

in the history of science between competing theories, for example heliocentric  

Copernican astronomy vs. Ptolemy’s geometric theory, the wave theory of light vs. 

particle theories, and Darwin’s theory of evolution vs. creationism.    These battles are 

adjudicated by evaluating how well the competing theories explain all the relevant 

evidence.    

Both rule-based and connectionist architectures have had many impressive 

applications to psychological phenomena.  Table 1 shows that rule-based architectures 

have had explanatory successes in many psychological domains, especially problem 

solving and language.  Table 2 shows that connectionism has also done very well in 

generating explanations.   Which kind of  cognitive architecture is the best explanation of 

the full range of psychological phenomena?  Neither tables 1 and 2 nor  the very large 

additional literature espousing these two approaches establishes a winner.     I see no 
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immediate prospect of one of the two kinds of cognitive architecture superseding the 

other by showing itself capable of explaining everything that the other one does in 

addition to what it currently explains.   Moreover, there are some aspects of thinking such 

as consciousness that  have largely been neglected by both approaches. 

The current battle between rule-based and connectionist architecture is analogous 

to a previous episode  in the history of science,  the controversy between wave and 

particle theories of light.  From the seventeenth through the nineteenth centuries, there 

was an oscillation between the wave theory, advocated by scientists such as Huygens and 

Young, and the particle theory, advocated by Gassendi and Newton.   The battle was only 

settled in the twentieth century by the advent of quantum theories of light, according to 

which light consists of photons that exhibit  properties of both particles and waves.    

Similarly, I think that the most reasonable conclusion from the current impasse of rule-

based and connectionist architectures is that the mind is both a rule-based and a 

connectionist system, and that problem solving can sometimes be search through a space 

of rules and sometimes parallel constraint satisfaction.        

Domains Applications References 
Problem solving Domains such as logic and 

chess 
Human-computer interaction 
Perceptual-motor system 

Newell and Simon (1972), Newell (1990) 
 
Kieras and Meyer (1997) 
Anderson et al. (2004) 

Learning Arithmetic procedures 
Scientific discovery 
Skill acquisition 
Tutoring 
Induction 

Anderson (1983) 
Langley et al. (1987), Thagard (1988) 
Newell (1990) 
Anderson (1993) 
Holland et al., (1986) 

Language Acquisition 
Regular and irregular verbs 

Anderson (1983), Pinker (1989) 
Pinker (1999)  

Reasoning Syllogisms 
Statistical heuristics 

Newell (1990) 
Nisbett (1993) 

Memory List memory Anderson et al. (1998)  
Explanation Hypothesis generation Thagard (1988) 
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Emotion Cognitive appraisal Scherer (1993)  
 
Table 1.  Selection of psychological phenomena that can be explained by 

processing of rules.     

 

Domains Applications References 
Vision Stereoscopic vision 

Figure interpretation 
Visual expectation 

Marr and Poggio (1976) 
Feldman (1981) 
Bressler  (2004) 

Language Letter perception 
Discourse comprehension 
Irony 
Grammar 
Semantic cognition 

McClelland and Rumelhart (1981) 
Kintsch (1998) 
Shelley (2001) 
Smolensky and Legendre (2006) 
Rogers and McClelland (2004) 

Concepts Schema application 
Impression formation 

Rumelhart, et al. (1986) 
Kunda and Thagard (1996) 

Analogy Mapping and retrieval Holyoak and Thagard (1989, 1995) 
Explanation Theory evaluation 

Social explanations 
Thagard (1992, 2000) 
Read and Marcus-Newhall (1993) 

Social behavior Cognitive  dissonance 
Personality 
Social perception 
Attitude change 

Shultz and Lepper (1996) 
Shoda and Mischel (1998) 
Read and Miller (1998) 
Spellman, Ullman, and Holyoak (1993)  

Decision Plan selection 
Preference construction 

Thagard and Millgram (1995) 
Simon, Krawcyyck, and Holyoak (2004) 

Emotion Appraisal and inference 
 

Nerb and Spada (2001), Thagard (2000, 2006) 

 

Table 2.  Selection of psychological phenomena that can be explained by 

parallel constraint satisfaction.   

Neural Architecture 

How can the brain be both a rule-based and a connectionist system?  It might 

seem that connectionism has a head start in taking into account  knowledge about the 

brain, given that its parallel processing  seems to employ a kind of brain-style 

computation.   But there are  many respects in which connectionist cognitive architectures 
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have not accurately captured how the brain works.   First, at the level of individual 

neurons, connectionist models usually describe neural activity in terms of activation, 

understood as the rate of firing.   But there are both neurological and computational 

reasons to think that it matters that neurons show particular patterns of spiking (Maass 

and Bishop, 1999; Rieke et al., 1997).  Imagine a neuron whose firing rate is 50 times per 

second.    Such a rate is consistent with many very different patterns of firing, for 

example (FIRE REST FIRE REST …) versus (FIRE FIRE REST REST …).    

Biologically realistic neural networks encode information using spiking patterns, not just  

rates of firing.   A population of neurons can become tuned to a set of stimuli such as 

faces by acquiring synaptic connections that generate different spiking patterns.   

Second, neural networks are not simply electrical systems, sending charges from 

one neuron to another; they are also chemical systems employing dozens of 

neurotransmitters and other molecules to carry out signaling in complex ways.   

Important neurotransmitters include glutamate for excitatory connections, GABA for 

inhibitory connections, and dopamine for circuits that evaluate the reward potential of 

stimuli.     A single synaptic connection can involve multiple neurotransmitters and other 

chemicals operating at different time scales (Leonard, 1997).   

Third, the brain should not be thought of as one big neural network, but as 

organized into areas that have identifiable functions.   For example, the occipital area at 

the back of your head is the main visual processing center.   The prefrontal cortex, the 

part of your brain roughly behind your eyes, is important for high-level reasoning and 

language.   More specifically, the ventromedial (bottom-middle) prefrontal cortex 

facilitates decision making by providing connections between high-level reasoning in the 
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dorsolateral (top-sides) prefrontal cortex and emotional reactions in the amygdala, which 

lies below the cortex.    Hence traditional connectionist  models are typically not 

biologically realistic either at the level of individual  neurons or at the level of brain 

organization.  

There is, however, a wealth of current research aimed at producing more 

biologically realistic models of cognitive processes.   Whether these models should 

currently be called “cognitive architectures” is not clear, because they have mostly been 

applied to low-level kinds of cognition such as perception and memory, rather than to 

high-level kinds of inference such as problem solving.    But these models have the 

potential to develop into broader accounts of human thinking that I hope will supersede 

the current apparent conflict between rule-based and connectionist approaches.  Table 3 

points to the work of five researchers in theoretical computational neuroscience who are 

pursuing promising directions.    

Researcher Applications Sample publications 
Jonathan Cohen, Princeton 
University 

Decision making, 
attention, 
categorization 

Miller & Cohen (2001) 
 

Chris Eliasmith, University 
of Waterloo 

Perception, memory, 
motor control 

Eliasmith and Anderson (2003),  
 

Stephen Grossberg, Boston 
University 

Perception, 
attention, learning 

Carpenter and Grossberg (2003),  

Randy O’Reilly, University 
of Colorado 

Learning, memory, 
attention 

O'Reilly, R. C., & Munakata, Y. 
(2000).  

Terry Sejnowski, University 
of California-San Diego 

Learning, memory, 
motor control 

Quartz and Sejnowski (2002),  

 

Table 3.   Some prominent work in the emerging field of theoretical 

neuroscience, which develops biologically realistic computational models 

of cognition.   
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Research in theoretical neuroscience along the lines of table 3 is highly technical, 

and I will not attempt to summarize the similarities and differences among the various 

researchers.  Instead, I will return to my previous example and indicate how concepts 

such as kind and cruel might be represented in a more biologically realistic fashion than 

is possible in rule-based and connectionist cognitive architectures.   Eliasmith (2003) 

provides a more specific argument about the advantages of theoretical neuroscience for 

going beyond the limitations of rule-based and connectionist approaches.   

Concepts in human brains are represented in a distributed fashion across multiple 

neurons, just as in the parallel distributed processing version of connectionism.   Whereas 

connectionist models distribute a concept such as kind across a small number of closely 

attached units, a more biologically realistic  model would have thousands or millions of 

spiking neurons distributed across multiple brain areas.    Using spiking neurons has the 

computational advantage of making it possible to model the dynamic properties of neural 

networks such as temporal coordination of different neural populations.   Moreover, in 

some models (e.g. ones by Cohen and O’Reilly) the role of particular neurotransmitters 

such as dopamine can be emphasized.    Dopamine is associated with positive emotional 

reactions, so it is likely involved in the fact that the concept of kindness is for most 

people a positive one.   When you think of someone as kind, you usually have a positive 

feeling toward them, whereas applying the concept cruel prompts negative emotions for 

most people.  Thus theoretical neuroscience is developing models that take into account 

the spiking and chemical properties of neurons.    

In addition, theoretical neuroscience can describe the contributions to the 

representation of a concept from different brain areas.  The semantic characteristics of 
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kind and cruel that are captured by approximate rules describing the behavior of people 

are probably represented in the prefrontal cortex, which plays a large role in reasoning.  

But other brain areas are likely involved too, for example the primary visual cortex which 

would be activated if you created a mental image of a person being kind or cruel, perhaps 

by kicking a homeless person.      Some concepts, e. g. automobile, are closely tied to 

specific modalities such as vision (Barsalou et al., 2003).   Moreover, the emotional 

component of concepts such as kind and cruel suggests the involvement of brain areas 

that are known to be active in positive emotions (e.g. the nucleus accumbens, which is 

tied to various pleasurable activities) and negative emotions (e.g. the insula which has 

been found to be active in both physical and social pain).   Thagard and Aubie (2008) 

show how satisfaction of both cognitive and emotional constraints can be performed in a 

neurally plausible manner.  In sum, from the perspective of theoretical neuroscience, a 

concept is a pattern of spiking and chemical behaviors in a large population of neurons 

distributed across multiple brain areas.    

Rule-based models have also been moving in the direction of greater neurological 

plausibility.   John Anderson and his colleagues have used brain scanning experiments to 

relate the ACT system to specific brain regions such as the prefrontal cortex, used for 

memory and matching of rules against facts, and the basal ganglia, used for the 

implementation of production rules (Anderson et al., 2004).  Other brain areas they 

postulate to be involved in the matching and firing of rules include the striatum for 

selection of rules and parts of the prefrontal cortex for memory buffers.    Thus rule-based 

cognitive architectures are becoming neural architectures, just as connectionist 

approaches are giving way to computational neuroscience.    
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Earlier, I mentioned  the great  synthesis accomplished by the quantum theory of 

light, according to which light consists of photons, which have properties of both 

particles and waves.    A similar synthesis has yet to occur in cognitive science, as no one 

has figured out fully how to blend the ideas emerging from  theoretical neuroscience 

about the behavior of spiking chemical neurons in multiple brain areas with the more 

high-level behavior of neurally grounded  rule-based systems.     Among the exciting new 

ideas are mathematical ways of showing how artificial neurons can implement features  

of rules such as their complex symbolic structure  (e.g. Smolensky and Legendre, 2006).   

My hope is that a grand  synthesis  will be accomplished by identifying how neural  

mechanisms that are well suited for low-level operations such as perception can also 

serve to support  high-level kinds of symbolic inferences.     Such a synthesis will show 

that the competition that raged in the 1980s and 1990s between rule-based and 

connectionist cognitive architectures  was merely a prelude to deep reconciliation by 

virtue of a unified theory of neural mechanisms.         

Accomplishment of this synthesis would not eliminate the usefulness of rule-

based and connectionist cognitive models, although it would undercut their claims to be 

universal cognitive architectures.  Cognitive theories are claims about the mental 

representations and computational procedures that produce different kinds of thinking.    

Computational models implemented as running programs provide simplified 

approximations of such representations and procedures.   Scientific models are like maps, 

in that different ones can be useful for different purposes.   Just as you use different 

scales of maps depending on whether your aim is to travel across the city or to travel 

across the country, so different kinds of model are useful for explaining different aspects 
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of human thinking.  A full model of the brain, encompassing all of its billions of neurons, 

trillions of synapses, and hundreds of chemicals would be as useless as a map of a 

country that was the same size and detail as the country itself.   A cognitive or neural 

theory does not aim to describe everything about thought and the brain, but rather to 

describe the mechanisms that underlie the fundamental causal processes most relevant to 

explaining those aspects of thinking we find most interesting.    Simplifications of the sort 

provided by rule-based and connectionist models will remain useful for explaining 

particular phenomena at comprehensible levels of detail.     Current rule-based and 

connectionist models successfully capture many aspects of thinking, particularly 

sequential problem solving and parallel constraint satisfaction.   Hence it will continue to 

be methodologically legitimate to employ them, even if it becomes established that the 

ultimate cognitive architecture is provided by theoretical neuroscience.      

If principles of neuroscience make possible the unification of rule-based and 

connectionist explanations under a common framework, then they should also serve to 

bring into a single  theoretical fold other aspects of cognition that  have been discussed 

using different theoretical ideas.       For example, it would be theoretically exciting to 

integrate ideas about probabilistic inference into a general framework that also applies to 

rule-based and connectionist processing.  Reasoning involving mental models, which are 

rich psychological representations of real or imagined situations, should also be 

incorporated.   Then cognitive science would have the sort of unifying theory that 

relativity and quantum theories provide to physics and that evolution and genetics 

provide to biology.   Such a grand unification may,  however, requires decades or even 

centuries.   
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Artificial Intelligence 

If it turns out that the deepest cognitive architecture is furnished by theoretical 

neuroscience, what are the implications for artificial intelligence?  When cognitive 

science began in the mid-1950s and got named and recognized as an interdisciplinary 

field in the mid-1970s, there was a common perception that psychology and artificial 

intelligence were natural allies.   A unified cognitive architecture based on rules or other 

sorts of representation would provide a way simultaneously of understanding how human 

minds work and how computers and robots can be made to work in comparable ways.    

The reconceptualization  of cognitive architectures  as  neural architectures raises the 

possibility that what kind of hardware an intelligent system is running on matters  much 

more than the pioneers of cognitive science realized.   Compared to computers, whose 

chips can perform operations more than a billion times per second, a neuron looks 

hopelessly slow, typically firing only around a hundred times per second.    But we have 

billions of neurons, with far more biological and chemical complexity than research on 

simple neural networks has recognized.    There are thousands of different kinds of 

neurons adapted for different purposes, and each neuron has thousands of chemical 

connections to other neurons that  allow many kinds of chemical modulation as well as 

transmission of electrical impulses.     The best way to get a computer to do things that 

are intelligent may be to develop software more suited to the extraordinary speed and 

lack of evolutionary history of its central processing unit.   Then there will be a 

bifurcation of cognitive architectures into ones best suited for operating with the messy 

biological  hardware of the brain and those best suited for operating with digital 
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processing.    Langley (2006) provides a thorough discussion of the role of cognitive 

architectures in artificial intelligence.   

Another possibility besides bifurcation is that there will be a set of statistical 

principles that describe how both brains and intelligent machines operate in the world.   

Perhaps there is a convergence between the recent trend in neuroscience to describe what 

brains do as a kind of Bayesian statistical inference (Doya et al., 2007) and the major 

trend  in artificial intelligence and robotics to approach problems statistically using 

Bayesian inference mechanisms  (Thrun, Burgard, and Fox, 2005).  Bayesian inference is 

a way of evaluating a hypothesis about what is going on in an environment by 

mathematically taking into account the prior probability of the hypothesis, the probability 

of the evidence given the hypothesis, and the probability of the evidence.  Perhaps then, 

at some level, both the human brain and digital computers can be viewed as engines for 

statistical inference.   It  remains to be seen whether that level will be the most fruitful for 

understanding human and artificial intelligence.  

Conclusion 

This chapter has reviewed the two main current approaches to cognitive 

architecture:  rule-based systems and connectionism.    Both kinds of architecture assume 

the central hypothesis of cognitive science that thinking consists of the application of 

computational procedures to mental representations, but they propose very different kinds 

of representations and procedures.    Rule-based systems apply procedures such as 

forward chaining to if-then representations with word-like symbols, whereas 

connectionist systems apply procedures such as parallel activation adjustment to 

representations comprised of neuron-like units with excitatory and inhibitory connections 



 26 

between them.   Both rule-based and connectionist architectures have had many successes 

in explaining important psychological phenomena concerning problem solving, learning, 

language use, and other kinds of thinking.   Given their large and only partially 

overlapping range of explanatory applications, it seems unlikely that either of the two 

approaches to cognitive architecture will come to dominate cognitive science.   I 

suggested an alternative scenario, consistent with current developments in both rule-

based systems and connectionist modeling, that will see a reconciliation of the two 

approaches by means of theoretical neuroscience.   Unified understanding of how the 

brain can perform both serial problem solving using rules and parallel constraint 

satisfaction using distributed representations will be a major triumph of cognitive science.      

 

Further Reading 

Thagard (2005) gives an accessible introduction to approaches to mental 

representation and computation.  Boden (2006) provides a review of the history of 

different approaches to cognitive science.   For rule-based systems, Newell (1990) is a 

good introduction.   For connectionism, see Bechtel and Abrahamsen (2002).  Dayan and 

Abbott (2001) provide an introduction to theoretical neuroscience.   
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